
Multitasking the INS3D-LU Code on the Cray Y-MP

Rod Fatoohi" Seokkwan Yoon t

Report RNR-91-015, April 1991

Abstract

This paper presents the results of multitasking the INS3D-LU code

on eight processors of the Cray Y-MP. The code is a full Navier-Stokes

solver for incompressible fluid in three dimensional generalized coordi-

nates using a lower-upper symmetric-Gauss-Seidel implicit scheme. This

code has been fully vectorized on oblique planes of sweep and parallelized

using autotasking with some directives and minor modifications. The tim-

ing results for five grid sizes are presented and analyzed. The code has

achieved a processing rate of over one Gflops and needs less than one #sec

per grid point per iteration on the Cray Y-MP for several grid sizes.

THIS REPORT WILL APPEAR AS PAPER NO. AIAA-91-1581 IN THE

PROCEEDINGS OF THE AIAA 10TH COMPUTATIONAL FLUID

DYNAMICS CONFERENCE, HONOLULU, HAWAII, JUNE 24-27, 1991.

*Computer Scientist. NAS Applied Research Branch, NASA Ames, MS T045-1, Moffett Field,
CA 94035. The author is an employee of Computer Sciences Co. This work was funded in part
through NASA Contract NAS 2-12961.

tSenior Scientist. The author is an employee of MCAT, Moffett Field, California. This work was
funded in part through NASA Contract NCC 2-505.

1 Introduction

During the past decade, a number of numerical algorithms have been developed for

computational fluid dynamics (CFD). Explicit methods which have been successful

for inviscid flows appears to be inefficient for viscous flows because of the well-known

Courant-Friedrichs-Lewy (CFL) stability condition. Stability of the explicit methods

are further restricted when solving a coupled set of differential equations for high

speed reacting flows past the National Aerospace Plane (NASP) or transatmospheric

vehicles for Earth and Mars. These inherent disadvantages of explicit methods let

CFD researchers put their emphasis on implicit methods. One of the fastest implicit

methods is a line Symmetric-Gauss-Seidel (SGS) relaxation method, which is not

vectorizable because of its recursive nature. Recently, a new SGS based implicit

algorithm (LU-SGS) was derived for the incompressible Navier-Stokes equations. 1

This algorithm is not only unconditionally stable but completely vectorizable in three

dimensions. Based on this scheme, a code named INS3D-LU was developed which

uses two-dimensional arrays in three dimensions for vectorization on oblique planes

of sweep. However, unlike the explicit methods, implementation of implicit methods

on parallel computers is not straightforward.

Despite the fact that the current generation of supercomputers can perform at

peak rates of several billion floating point operations per second, very few codes

can achieve these rates. While multitasking has been available on the Cray series of

multiprocessor supercomputers since 1984, its use has been very limited. Some exper-

iments have shown that reasonable performance can be achieved on these machines. 2

The work reported here was just such an experiment. The INS3D-LU code has been

multitasked on eight processors of the Cray Y-MP using a technique called autotask-

ing. This technique as well as the numerical algorithm and the measured results are

described in the following sections.

2 Autotasking

Autotasking, or automatic multitasking, is a technique where the compiling system

attempts to detect and exploit parallelism in a Fortran program and generates code

to be executed on multiple processors. 3 This process is automatic but not all types of

parallelism can be detected and programmer intervention is frequently required. Au-

totasking works on do-loop boundaries. If dependence analysis allows it, autotasking

turns a nested do loop to a vector inner loop and a parallel outer loop. In determining

how to optimize a program, autotasking favors vectorization over parallelism. With

user direction, autotasking can stripmine a single vectorized do loop with a large

iteration count. Stripmining effectively turns the single vectorized loop into a nested

do loop with a vector inner loop and a parallel outer loop.

Autotasking accepts compiler directives which appear as comment lines. These

directives fall into two categories: CFPP$ and CMIC$. The CFPP$ directives tell the

dependence analyzer where to look for parallelism in a program or make assertions

that may allow it to recognize parallelism. The CMIC$ directives are used to enforce

2

parallelismwhen it is safeto do it.

3 Numerical Algorithm

Let t be time; p and p the density and pressure; u, v, and w the velocity components
in Cartesian coordinates (x,y, z); _) the vector of conserved variables; E, F, and

the convective flux vectors; and E., /ft., and G. the flux vectors for the viscous

terms. Then the three-dimensional Navier-Stokes equations in generalized curvilinear

coordinates (_, r/, () can be written as

o,0 + oe(?_- _) + o.(?- &) + o¢(0 -0_) = o (1)

where

Q=h

Vu + ri_p

= h i Vv + %p

[Vw + rlzp

E=h

_U

I Uv÷ _,pl '
LUw + _p.l

^ Wu + (_p
C--hlWv+(,,p I

[ww + (zp J

The contravariant velocity components U, V, and W are defined as

(2)

U = (,_u + (_v + _.w

V = r/_u + %v + rl_w

W =(_u+fyv+¢zw (3)

where fl is the pseudocompressibility parameter, h denotes the cell volume.

An unfactored implicit scheme can be obtained from a nonlinear implicit scheme

by linearizing the flux vectors about the previous time step and dropping terms of

the second and higher order.

[I + aAt(DeA + DnB + D¢C)]SQ =-AtR

where/) is the residual

(4)

= De(/7: -/_) + D,(/_ -/_) + D¢(G - 0_) (5)

and I is the identity matrix. 8_) is the correction 6 "+1 -Q", where n denotes the

time level. De, D,, and D(are difference operators that approximate 0e, 0,, and 0¢.
A,/_, and C are the Jacobian matrices of the convective flux vectors.

0_ o2 00

For a = ½, the scheme is second order accurate in time. For other values of a, the

time accuracy drops to first order.
The LU-SGS scheme can be written as

where

LD-1U6Q = -AtR (7)

L= I + aAt(D-_2 + + D;B + + D-_C + - 2- - B- - C-)

D = I+ aAt(2 + - A- + B+ - B- + C+ - C-)

U = I + aAt(D_2- + D+/_ - + D_C- + 2 + +/_+ + C+) (8)

In the framework of the LU-SGS algorithm, a variety of schemes can be developed

by different choices of numerical dissipation models and Jacobian matrices of the flux

vectors. It is desirable that the matrix should be diagonally dominant to assure the

convergence. Jacobian matrices leading to diagonal dominance are constructed so

that %' matrices have nonnegative eigenvalues while '-' matrices have nonpositive

eigenvalues. For example,
1

2± = _[2 + p(2)I] (9)
Z

and

p(2) = _ ma_[I_(2)I] (10)

where A(A) represent eigenvalues of Jacobian matrix 2 and _ is a constant that is

greater than or equal to 1. The diagonal matrix of eigenvalues is

U 0

_,(2)= 0 U
0 0

0 0

0 0

0 0

u +c_ o
o v-c_

(11)

where Ce is the speed of sound, or the pseudospeed of sound in the case of incom-

pressible flow

Ce = _/U 2 + fl(_ + _ + _) (12)

It is interesting to note that the need for block inversions can be eliminated if we use

approximate Jacobian matrices of equation (9). Setting a = 1 and At = cx_ gives a

Newton-like iteration. Then, equation (7) reduces to

where

L = pI - 2,+_1._,_- &.+,_,,_- c5,_-,
D=pI

A A

U = pI + A'[+I,j, k + B[,j+I, k + C_,j,k+ 1

p = p(2) + p($) + p(_)

(13)

(14)

4

The algorithm permits scalardiagonalinversionssince

[i 00]Diagonal(L or U) = 0 0

0 p

(15)

Another interesting feature of the present algorithm is that the scheme is com-

pletely vectorizable on i + j + k = constant oblique planes of sweep. An oblique

plane is illustrated in Figure 1. This potential is achieved by reordering the three-

dimensional arrays into two-dimensional arrays, that is,

Q(ipoint, iplane) = Q(i,j,k) (16)

where iplane is the serial number of plane of sweep, and ipoint is the address on that

plane.

4 Implementation and Results

The flow solver code, INS3D-LU, was developed based on the numerical algorithm

described above. The code was used to compute the viscous incompressible flow

through a straight square duct. The Reynolds number is 790. In order to study

the impact of task granularity on the performance of the code, five grid sizes were

used to solve the same problem. These grids are: 41 x 21 x 21 (0.018 million grid

points), 63 × 63 × 63 (0.25 million grid points), 127 × 63 × 63 (0.5 million grid points),

101 x 101 × 101 (1 million grid points), and 127 × 127 × 127 (2 million grid points).

The flow solver has two parts: an explicit part, the right hand side (RHS) of

equation (7), and an implicit part, the left hand side (LHS) of equation (7). These

two parts have different degrees of parallelism. The RHS is highly parallel with no

data dependency in the three dimensions. In computing this part, the inner loops

were vectorized and the outer loops were multitasked. The dependence analyzer was

able to detect parallelism for most loops of the RHS. Other loops were multitasked

either by inserting directives to enforce parallelism or by reordering the computations

to exploit parallelism. The LHS has a limited degree of parallelism. This part uses

two-dimensional arrays of the form given in equation (16) where the first dimension,

ipoint, is the parallel dimension and the second dimension, ipIane, is the serial di-

mension. The value of ipoint ranges from 1 to the multiplication of the smallest two

dimensions of the domain. For a relatively large problem, this means that there is

enough work to combine parallelism with vectorization in the parallel dimension. An

autotasking directive was used to stripmine the do loops involved in computing the

L and U terms of the LHS.

We multitasked the INS3D-LU code on the Cray Y-MP at NASA Ames Research

Center. This machine has eight processors, 128 Mwords of main memory, and 6 nsec

clock cycle. Table 1 contains the required memory, the measured execution time per

grid point per iteration, the speedup, the parallel efficiency, and the processing rate

for the five grid sizes on p processors of the Cray Y-MP, where p is ranging from one to

eight. All timings weremeasuredin a dedicatedenvironment. Speedupwascomputed
by taking the ratio of the time to solvethe problemusing oneprocessorto the time
to solvethe sameproblemusingp processors. The parallel efficiency was determined

by taking the ratio of the speedup using p processors to p. The processing rate for

the single processor cases was measured using the hardware performance monitor of

the machine. The single processor rate was multiplied by the speedup to obtain the

multitasked rate. As shown in Table 1, the multitasked cases require slightly more

memory than the single processor cases. The two million grid point case uses about

900£ of the total memory of the machine. The parallel efficiency and processing rate

are also shown in Figures 2 and 3 for the five grid sizes.

Figure 2 shows that for a fixed grid size, as the number of processors in use

was increased, the amount of work per processor decreased thereby reducing the

parallel efficiency of the code. However, for a fixed number of processors, increasing

the number of grid points caused an increase in the amount of work per processor,

especially in the LHS, thereby improving the performance of the code. Except for

the smallest grid, the code has achieved a processing rate of over one Gflops and

requires less than one psec per grid point per iteration on eight processors of the

Y-MP. These goals were also achieved on §even processors of the machine for couple

cases. Moreover, the parallel efficiency stayed within 800£ for all grid sizes except

the smallest one. The smallest grid, 41 x 21 x 21, achieved a speedup of only four

because of lack of parallelism in the LHS; the largest oblique plane for this grid has

only 400 points. The results also show that the 127 x 63 x 63 grid has outperformed

the 101 x 101 x 101 grid because the former uses vectors of length 64 or 128, which

matches the length of the Cray vector registers, in the RHS. The highest obtained

rate was 1.218 Gflops. This is about 46% of the peak performance rate of the machine

(2.667 Gflops).

5 Conclusions

A full Navier-Stokes solver for incompressible fuid in three dimensional generalized

coordinates was multitasked on the Cray Y-MP. This solver is based on LU factor-

ization and SGS implicit relaxation scheme. It requires less than one psec per grid

point per iteration on eight processors of the Cray Y-MP for all grid sizes except

the smallest one. Despite the fact the LUSGS scheme is an implicit scheme with a

limited degree of parallelism, a speedup of over seven and a processing rate of over

1.2 Gflops were achieved on the Cray Y-MP using two million grid points. This study

also shows that the Cray Y-MP is a well balanced architecture with fast memory and

processing units and adequate memory bandwidth. Although this scheme requires

scatter and gather operations and variable vector lengths, a reasonable percentage of

the peak performance of the machine was achieved for several cases. The next step

will be adapting this scheme to massively parallel machines such as the Connection

Machine and Intel iPSC/860.

6

References

1. S. YOON, D. KWAK, AND L. CHANG, LU-SGS implicit algorithm for three-

dimensional incompressible Navier-Stokes equations with source term, AIAA

Paper 89-1964-CP, 1989.

2. R. FATOOHI, Multitasking on the Cray Y-MP: an experiment with a 2-D Navier-

Stokes code, International Journal of High Speed Computing, Vol. 1, No. 3,

1989, pp. 433 - 447.

3. CRAY RESEARCH, INC., UNICOS autotasking user's guide, SN-2088, 1989.

Figure 1. Oblique plane of sweep.

iplane) = P(i, j, k)

i + j + k = constant plane

/
/

k

TABLE 1

INS3DLU on the Cray Y-MP

Grid points

(Million)

0.018

0.25

0.5

1.0

2.0

Proc

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

Memory Time/grd-pt/itr speedup Efficiency Performance

(Mwords) (#sec) (%) (Mflops)

1.1

1.2

1.2

1.2

1.2

1.2

1.2

1.2

15.1

15.3

15.3

15.3

15.3

15.3

15.3

15.3

28.1

28.4

28.4

28.4

28.4

28.4

28.4

28.4

56.3

56.7

56.7

56.7

56.7

56.7

56.7

56.7

115.6

116.2

116.2

116.2

116.2

116.2

116.2

116.2

6.525

3.744

2.749

2.207

1.941

1.825

1.532

1.615

6.319

3.331

2.256

1.736

1.432

1.236

1.060

0.968

6.289

3.283

2.210

1.688

1.385

1.184

1.024

0.924

6.727

3.509

2.359

1.786

1.447

1.228

1.098

0.983

6.347

3.286

2.191

1.657

1.342

1.130

0.996

0.884

1.74

2.37

2.96

3.36

3.58

4.26

4.04

1.90

2.80

3.64

4.41

5.11

5.96

6.53

1.92

2.85

3.73

4.54

5.31

6.14

6.80

1.92

2.85

3.77

4.65

5.48

6.13

6.84

1.93

2.90

3.83

4.73

5.62

6.37

7.18

87.1

79.1

73.9

67.2

59.6

60.9

50.5

94.8

93.4

91.0

88.3

85.2

85.2

81.6

95.8

94.9

93.1

90.8

88.5

87.8

85.0

95.9

95.1

94.2

93.0

91.3

87.5

85.5

I

96.6

96.6

95.7

94.6

93.6

91.0

89.7

155

270

367

457

520

553

659

625

167

318

469

609

739

856

998

1093

169

324

481

630

768

898

1039

1151

161

309

459

607

749

883

987

1102

170

328

491

650

802

953

1081

1218

8

:j

0

I

Z
I,--4

©

I:

¢q

i

!

!i,
Ii,

I

"!
I,

I
I

I

I

I

I

i I I I

O0

t",.-

0

0

,, o.

q

¢D

0

!

t4_
0

¢.)

©

e_

° _,.,.,(

0 0 0 _ 0 0
0 0 0 _ 0 0

SdO___IIAI

to

